$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\dist}[1]{\text{dist}(#1)}$ $\newcommand{\max}[1]{\text{max}(#1)}$ $\newcommand{\min}[1]{\text{min}(#1)}$ $\newcommand{\supr}[1]{\text{sup}(#1)}$ $\newcommand{\infi}[1]{\text{inf}(#1)}$ $\newcommand{\set}[1]{\left\{#1\right\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\proj}{\text{proj}}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{\left| #1 \right|}$ $\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$ $\newcommand{\pare}[1]{\left(#1\right)}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\d}{\text d}$ $\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\inner}[2]{\langle #1, #2 \rangle}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\var}[1]{\text{var}(#1)}$ $\newcommand{\tr}[1]{\text{tr}(#1)}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\ceil}[1]{\lceil#1\rceil}$ $\newcommand{\floor}[1]{\lfloor#1\rfloor}$ $\newcommand{\Re}[1]{\text{Re}(#1)}$ $\newcommand{\Im}[1]{\text{Im}(#1)}$ $\newcommand{\dom}[1]{\text{dom}(#1)}$ $\newcommand{\fnext}[1]{\overset{\sim}{#1}}$ $\newcommand{\transpose}[1]{#1^{\text{T}}}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$ $\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$ $\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$ $\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$ $\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$ $\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$ $\newcommand{\b}[1]{\boldsymbol{#1}}$
Note

We do not discuss everything in great detail here since everything has been discussed in MATH 115A Section 1.2. This note merely serves as a quick review.

Definition: Column Vector

A column $n$-vector is an array of $n $ numbers, denoted

$$\b{ a } = {\Vcr{ a_1 }{ a_2 }{ \vdots }{ a_n }} $$

$a_i $ is called the $i $th component of the vector $a$.

Definition: Real Vector Space

$\R^n $ is the set of column $n $-vectors with real components.

Definition: Transpose

The transpose of a given column vector $a $ is a row vector with corresponding elements, denoted

$$\transpose{ \b{ a }} = (a_1, a_2, …, a_n)$$

Definition: Vector Addition

$$\b{ a } + \b{ b } = \transpose{ [ a_1 + b_1, a_2 + b_2, …, a_{ n } + b_n] } $$

Vector addition follows: commutativity, associativity.

Exist a unique zero vector.

For each vector $\b{ a } $ exist $- \b{ a } $.

Definition: Scalar Multiplication

$c \b{ a } = \transpose{(ca_1, ca_2, …, ca_{ n })}$

Scalar multiplication follows: distributive law, associativity.

The scalar $1$ satisfies: $1 \b{ a } = \b{ a } $.

Any scalar $c$ satisfies: $c \b{ 0 } = \b{ 0 } $.

The scalar $0 $ satisfies: $0 \b{ a } = 0 $.

The scalar $-1 $ satisfies: $-1 \b{ a } = - \b{ a } $.

Definition: Linearly Independent

if $c_1 \b{ a }_1 + c_2 \b{ a }_2 + … + c_{ k } \b{ a }_{ k } = 0 \implies \forall i = 1, …, k, c_i = 0$, then

$\set{ \b{ a }_1, \b{ a }_2, …, \b{ a }_{ k }}$ is linearly independent. Otherwise, the set is linearly dependent.

Note

Any set of vectors that contains the zero vector is linearly dependent.

Definition: Linear Combination

if $\exists c_1, c_2, …, c_{ k }$ such that $\b{ a } = c_1 \b{ a }_1 + c_2 \b{ a }_2 + … + c_{ k } \b{ a }_{ k } $, then $\b{ a } $ is a linear combination of $\set{ \b{ a }_1, \b{ a }_2, …, \b{ a }_{ k }} $.

Corollary

A set of vectors $\set{ \b{ a }_1, \b{ a }_2, …, \b{ a }_{ k }}$ is linearly dependent $\iff$ $a_i, i \in \set{1, …, k} $ is a linear combination of the remaining vectors.

Definition: Subspace of $\R^n $

A subset $W $ of $\R^n $ is called a subspace of $\R^n $ if $W $ is closed under the operation of vector addition and scalar multiplication.

Definition: Span

Let $\b{ a }_1, \b{ a }_2, …, \b{ a }_{ k } $ be arbitrary vectors in $\R^n $. The set of all their linear combinations is called the span of $\b{ a }_1, \b{ a }_2, …, \b{ a }_{ k } $ and is denoted

$$\spa{ \set{ \b{ a }_1, \b{ a }_2, …, \b{ a }_{ k }}} $$

or more literally,

$$\set{ \sum_{ i=1 }^{ k } c_i \b{ a }_i \mid \b{ a }_1, \b{ a }_2, …, \b{ a }_{ k } \in \R } $$

Definition: Basis

Given a vector space $V $, any set of linearly independent vectors $\set{ \b{ a }_1, \b{ a }_2, …, \b{ a }_{ k }} \subseteq V $ s.t. $V = \spa{ \b{ a }_1, \b{ a }_2, …, \b{ a }_{ k }} $ is referred to as a basis of the vector space $V $.

Corollary

If $\set{ \b{ a }_1, \b{ a }_2, …, \b{ a }_{ k }} $ is a basis of a vector space $V $, then any vector $\b{ a } $ of $V $ can be represented uniquely as

$$\b{ a } = c_1 \b{ a }_1 + c_2 \b{ a }_2 + … + c_{ k } \b{ a }_{ k } $$