$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\dist}[1]{\text{dist}(#1)}$ $\newcommand{\max}[1]{\text{max}(#1)}$ $\newcommand{\min}[1]{\text{min}(#1)}$ $\newcommand{\supr}[1]{\text{sup}(#1)}$ $\newcommand{\infi}[1]{\text{inf}(#1)}$ $\newcommand{\set}[1]{\left\{#1\right\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\proj}{\text{proj}}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{\left| #1 \right|}$ $\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$ $\newcommand{\pare}[1]{\left(#1\right)}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\d}{\text d}$ $\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\inner}[2]{\langle #1, #2 \rangle}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\var}[1]{\text{var}(#1)}$ $\newcommand{\tr}[1]{\text{tr}(#1)}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\ceil}[1]{\lceil#1\rceil}$ $\newcommand{\floor}[1]{\lfloor#1\rfloor}$ $\newcommand{\Re}[1]{\text{Re}(#1)}$ $\newcommand{\Im}[1]{\text{Im}(#1)}$ $\newcommand{\dom}[1]{\text{dom}(#1)}$ $\newcommand{\fnext}[1]{\overset{\sim}{#1}}$ $\newcommand{\transpose}[1]{#1^{\text{T}}}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$ $\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$ $\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$ $\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$ $\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$ $\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$ $\newcommand{\b}[1]{\boldsymbol{#1}}$
Note

We do not discuss basic knowledge of matrices in great detail here since everything has been discussed in MATH 115A Chapter 2. This note merely serves as a quick review.

Still, readers should pay attention to determinants of the matrices, and $p $th order-minor of matrices, since they are new contents in this class.

Definition: Matrix

A matrix is a rectangular array of numbers. A matrix $\b{ A } $ with $m $ rows and $n $ columns is called an $m \times n $ matrix, and we write

$$\b{ A } = {\Mqr{{\vcr{ a_{11}}{ a_{21}}{ … }{ a_{m1}}}}{{\vcr{ a_{12}}{ a_{22}}{ … }{ a_{2n}}}}{{\vcr{ … }{ \vdots }{ \ddots }{ \vdots }}}{{\vcr{ a_{1n}}{ a_{m2}}{ … }{ a_{mn}}}}} $$

For convenience, we denote the $i $th column of $\b{ A } $ as $\b{ a }_i $ in this note.

Definition: Rank

The maximal number of linearly independent columns of $\b{ A } $ is called the rank of the matrix $\b{ A } $, denoted $\rank{ \b{ A }} $. Note that $\rank{ \b{ A }} $ is the dimension of $\spa{ \set{ \b{ a }_1, \b{ a }_2, …, \b{ a }_{ n }}} $, where $\b{ a_i } $ is $i $th column of the matrix $\b{ A } $.

Properties

The rank of a matrix $\b{ A } $ is invariant under the following operations:

  1. Multiplication of the columns or rows of $\b{ A } $ by nonzero scalars.

  2. Interchange of the columns or rows.

  3. Addition to a given column (row) a linear combination of other columns (rows).

Properties: Linearity of Determinant

$$\begin{align*} & \det \left [ {\vce{ \mid }{ \b{ a }_1 }{ \mid }}, …, {\vce{ \mid }{ \b{ a }_{k-1}}{ \mid }}, {\vce{ \mid }{ \pare{p \b{ a }_{k}^{(1)} + q \b{ a }_k^{(2)}}}{ \mid }}, {\vce{ \mid }{ \b{ a }_{k+1}}{ \mid }}, …, {\vce{ \mid }{ \b{ a }_n }{ \mid }} \right ] \br &= \det \left [ {\vce{ \mid }{ \b{ a }_1 }{ \mid }}, …, {\vce{ \mid }{ p \b{ a }_{k}^{(1)}}{ \mid }}, …, {\vce{ \mid }{ a_n }{ \mid }} \right ] + \det \left [ {\vce{ \mid }{ \b{ a }_1 }{ \mid }}, …, {\vce{ \mid }{q \b{ a }_k^{(2)}}{ \mid }}, …, {\vce{ \mid }{ \b{ a }_n }{ \mid }} \right ] \end{align*}$$

Properties: Other Properties of Determinants
  1. If $\b{ a }_{k} = \b{ a }_{k+1} $, then $\det \b{ A } = 0 $.
  2. If $\b{ a }_{k} = 0 $, then $\det \b{ A } = 0 $.
  3. $\det \b{ I } = 1 $.
  4. The determinant changes its sign if we interchange columns.
  5. The determinant does not change if one column is added with another column’s multiple.
  6. $p \det \left [ {\vce{ \mid }{ \b{ a }_1 }{ \mid }}, …, {\vce{ \mid }{ \b{ a }_j}{ \mid }},…, {\vce{ \mid }{ \b{ a }_n }{ \mid }} \right ] = \det \left [ {\vce{ \mid }{ \b{ a }_1 }{ \mid }}, …, {\vce{ \mid }{ p\b{ a }_j}{ \mid }},…, {\vce{ \mid }{ \b{ a }_n }{ \mid }} \right ]$
Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$$\begin{align*} & \det \left [ {\vce{ \mid }{ \b{ a }_1 }{ \mid }}, …, {\vce{ \mid }{ \b{ a }_{k-1}}{ \mid }}, {\vce{ \mid }{ \pare{\b{ a }_{k} + p \b{ a }_j}}{ \mid }}, {\vce{ \mid }{ \b{ a }_{k+1}}{ \mid }},… , {\vce{ \mid }{ \b{ a }_{j}}{ \mid }}, …, {\vce{ \mid }{ \b{ a }_n }{ \mid }} \right ] \br &= \det \left [ {\vce{ \mid }{ \b{ a }_1 }{ \mid }}, …, {\vce{ \mid }{ \b{ a }_{k}}{ \mid }}, …, {\vce{ \mid }{ a_n }{ \mid }} \right ] + p \det \left [ {\vce{ \mid }{ \b{ a }_1 }{ \mid }}, …, {\vce{ \mid }{ \b{ a }_j}{ \mid }},… , {\vce{ \mid }{ \b{ a }_{j}}{ \mid }}, … , {\vce{ \mid }{ \b{ a }_n }{ \mid }} \right ] \end{align*}$$

Definition: $P$th-Order Minor

A $p $th-order minor of an $m \times n $ matrix $\b{ A } $, with $p < \min{ m, n } $, is the determinant of a $p \times p $ matrix obtained from $\b{ A } $ by deleting $m - p $ rows and $n - p $ columns.

Theorem

If an $m \times n (m \geq n)$ matrix $A $ has a nonzero $n $th-order minor, then the columns of $\b{ A } $ are linearly independent, that is $\rank{ \b{ A }} = n $.

Definition: Invertible Matrix

An invertible matrix is a square matrix whose determinant is nonzero.