$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\dist}[1]{\text{dist}(#1)}$ $\newcommand{\set}[1]{\{#1\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\proj}{\text{proj}}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{| #1 |}$ $\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$ $\newcommand{\pare}[1]{\left(#1\right)}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\d}{\text d}$ $\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\inner}[2]{\langle #1, #2 \rangle}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\var}[1]{\text{var}(#1)}$ $\newcommand{\tr}[1]{\text{tr}(#1)}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\Re}[1]{\text{Re}(#1)}$ $\newcommand{\Im}[1]{\text{Im}(#1)}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$ $\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$ $\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$ $\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$ $\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$ $\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
Properties: Properties of Fields, in Particular $\Q$

Given the definition of addition and multiplication over a field, where the sum $a + b$ and the product $ab$ also represent rational numbers, the following properties hold in the field:

A1 (Associative Law of Addition). $a + (b+ c) = (a + b) + c, \forall a, b, c $

A2 (Commutative Law of Addition). $a+ b = b + a, \forall a, b$

A3. $a + 0 = a, \forall a $

A4. $\forall a, \exists -a $ such that $a + (-a) = 0 $

M1 (Associative Law of Multiplication). $a(bc) = (ab)c, \forall a, b, c $

M2 (Commutative Law of Multiplication). $ab = ba, \forall a, b $

M3. $a \cdot 1 = a, \forall a $

M4. $\forall a \neq 0, \exists \inv{ a } such that a \inv{ a } = 1 $

DL (Distributive Law). $a(b+c) = ab + ac, \forall a, b, c $

In particular, the set $\Q$ is a field and these properties hold in $\Q$.

Properties: The Ordering Structure of $\Q$

O1. Given $a $ and $b $, either $a \leq b $ or $b \leq a $.

O2. If $a \leq b $ and $b \leq a $, then $a = b $.

O3 (Transitive Law). If $a \leq b $ and $b \leq c $, then $a \leq c $.

O4. If $a \leq b $, then $a +c \leq b + c$.

O5. If $a \leq b $ and $0 \leq c $, then $ac \leq bc $.

Fields with these properties are called ordered fields.

Theorem : Consequences of Field Properties
  1. $a + c = b + c \implies a = b$
  2. $a \cdot 0 = 0, \forall a$
  3. $(-a)b = -ab, \forall a,b$
  4. $(-a)(-b) = ab, \forall a, b$
  5. $ac = bc$ and $c \neq 0 \implies a = b$
  6. $ab = 0 \implies a = 0$ or $b = 0 , \forall a, b, c \implies \R$
Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$$a + c = b + c \implies (a + c) + (-c) = (b + c) + (-c) $$

$a + [c + (-c)] = b + [c + (-c)] \tag{A1}$

$a + 0 = b + 0 \tag{ A4 }$

$a = b \tag{ A3 }$

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$a(b + 0) = a \cdot b + a \cdot 0 \tag{ DL }$

$ab = ab + a \cdot 0 \tag{ A3 }$

$ab + 0 = ab + a \cdot 0 \tag{ A3 } $

$0 + ab = a \cdot 0 + ab \tag{ A3 } $

$0 = a \cdot 0 \tag{ 1 }$

Theorem : Consequences of the Ordered Field Properties

Define $a < b $ as $a \leq b $ and $a \neq b $.

  1. If $a \leq b $, then $-b \leq -a $.
  2. if $a \leq b $ and $c \leq 0 $, then $bc \leq ac $.
  3. If $0 \leq a $ and $0 \leq b $, then $0 \leq ab $.
  4. If $0 \leq a^2, \forall a $.
  5. $0 < 1 $.
  6. If $0 < a$, then $0 < \inv{ a } $.
  7. If $0 < a < b $, then $0 < \inv{ b } < \inv{ a }$, for $a, b, c \in \R $.
Definition: Absolute Value

$\abs{ a } = a $ if $ a \geq 0 $ and $\abs{ a } = -a $ if $ a \leq 0 $.

$\abs{ a } $ is called the absolute value of $a$.

Definition: Distance

For numbers $ a $ and $ b $, we define the distance between $ a $ and $ b $ $\dist{a, b} = \abs{ a - b }$.

Properties: Properties of the Absolute Value
  1. $\abs{ a } \geq 0, \forall a \in \R $
  2. $\abs{ ab } = \abs{ a } \cdot \abs{ b }, \forall a, b \in \R $
  3. $\abs{ a + b } \leq \abs{ a } + \abs{ b }, \forall a, b \in \R $
Corollary : Triangle Inequality

$\dist{ a, c } \leq \dist{ a, b } + \dist{ b, c }, \forall a, b, c \in \R$