$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\dist}[1]{\text{dist}(#1)}$ $\newcommand{\max}[1]{\text{max}(#1)}$ $\newcommand{\min}[1]{\text{min}(#1)}$ $\newcommand{\supr}[1]{\text{sup}(#1)}$ $\newcommand{\infi}[1]{\text{inf}(#1)}$ $\newcommand{\ite}[1]{\text{int}(#1)}$ $\newcommand{\ext}[1]{\text{ext}(#1)}$ $\newcommand{\bdry}[1]{\partial #1}$ $\newcommand{\argmax}[1]{\underset{#1}{\text{argmax }}}$ $\newcommand{\argmin}[1]{\underset{#1}{\text{argmin }}}$ $\newcommand{\set}[1]{\left\{#1\right\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\tilde}{\text{~}}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\proj}{\text{proj}}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{\left| #1 \right|}$ $\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$ $\newcommand{\pare}[1]{\left(#1\right)}$ $\newcommand{\brac}[1]{\left[#1\right]}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\d}{\text d}$ $\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$ $\newcommand{\limd}[3]{\underset{#1 \to #2; #3}\lim}$ $\newcommand{\der}[2]{\frac{\d #1}{\d #2}}$ $\newcommand{\derw}[2]{\frac{\d #1^2}{\d^2 #2}}$ $\newcommand{\pder}[2]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\pderw}[2]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\pderws}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\inner}[2]{\langle #1, #2 \rangle}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\nullspace}[1]{\mathcal{N}\pare{#1}}$ $\newcommand{\range}[1]{\mathcal{R}\pare{#1}}$ $\newcommand{\var}[1]{\text{var}\pare{#1}}$ $\newcommand{\cov}[2]{\text{cov}(#1, #2)}$ $\newcommand{\tr}[1]{\text{tr}(#1)}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\ceil}[1]{\lceil#1\rceil}$ $\newcommand{\floor}[1]{\lfloor#1\rfloor}$ $\newcommand{\Re}[1]{\text{Re}(#1)}$ $\newcommand{\Im}[1]{\text{Im}(#1)}$ $\newcommand{\dom}[1]{\text{dom}(#1)}$ $\newcommand{\fnext}[1]{\overset{\sim}{#1}}$ $\newcommand{\transpose}[1]{{#1}^{\text{T}}}$ $\newcommand{\b}[1]{\boldsymbol{#1}}$ $\newcommand{\None}[1]{}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$ $\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$ $\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$ $\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$ $\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$ $\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
Definition: Limiting Value of a Function

Let $(X, d_X) $ and $(Y, d_Y)$ be two metric spaces, let $E$ be a subset of $X$, and let $f: X \to Y $ be a function. If $x_0 \in X$ is an adherent point of $E$, and $L \in Y$.

we say that $f(x)$ converges to $L$ in $Y$ as $x$ converges to $x_0$ in $E$, and we write $\limd{ x }{ x_0 }{ x \in E \setminus \set{ x_0 }} f(x) = L$ iff

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } \forall x \in E, d_X(x, x_0) < \delta \implies d_Y(f(x), L) < \epsilon $$

Remarks

According to the definition of function continuity at a point, we see that

$f$ is continuous at $x_0$ iff

$$\limd{ x }{ x_0 }{ x \in X } f(x) = f(x_0) $$

Thus $f$ is continuous on $X$ iff we have

$$\limd{ x }{ x_0 }{ x \in X } f(x) = f(x_0) \forall x_0 \in X $$

Remarks

Often, we omit the condition $x \in X $ and abbreviate $\limd{ x }{ x_0 }{ x \in X } f(x) $ as simply $\limu{ x }{ x_0 } f(x) $ when it is clear what space $x $ will range in.

Proposition

Let $(X, d_X) $ and $(Y, d_y) $ be two metric spaces. $E \subseteq X$, and let $f: X \to Y$ be a function. Let $x_0 \in X$ be an adherent point of $E$ and $L \in Y$. Then the following four statements are logically equivalent:

  1. $\limd{ x }{ x_0 }{ x \in E } f(x) = L$.

  2. $\forall (x^{(n)})^\infty_{ n =1} \in E, \limu{ n }{ \infty }(x^{(n)}) = x_0$ with respect to the metric $d_X$, $\limu{ n }{ \infty }(f(x^{(n)}))^\infty_{ n =1} = L $ with respect to the metric $d_Y $.

  3. For every open set $V \subset Y$ which contains $L$, there exists an open set $U \subset X$ containing $x_0$ such that $f(U \cap E) \subseteq V$.

  4. If one defines the function $g: E \cup \set{ x_0 } \to Y $ by defining $g(x_0) := L$, and $g(x) := f(x) $ for $x \in E \setminus \set{ x_0 } $, then $g $ is continuous at $x_0 $. Furthermore, if $x_0 \in E $, then $f(x_0) = L $.

Remarks

Observe that a function $f(x)$ can converge to at most one limit $L$ as $x$ converges to $x_0$. In other words, if the limit

$$\limd{ x }{ x_0 }{ x \in E } f(x)$$

exists at all, then it can only take at most one value.

Remarks

The requirement that $x_0 $ be an adherent point of $E$ is necessary, because it ensures that for $\delta $ sufficiently small, there are points $x \in E $, so that $d(x, x_0) < \delta $.

Note

$(X, d_X), (Y, d_Y)$. $E \subseteq X$. $f: E \to Y$. $x_0 \in E$.

Show that $\limd{ x }{ x_0 }{ x \in E } f(x)$ exists if and only if $\limd{ x }{ x_0 }{ x \in E \setminus \set{ x_0 }} f(x) $ exists and is equal to $f(x_0)$.

Show that $\limd{ x }{ x_0 }{ x \in E } f(x)$ exists $\implies \limd{ x }{ x_0 }{ x \in E } f(x) = f(x_0)$.