$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\dist}[1]{\text{dist}(#1)}$ $\newcommand{\max}[1]{\text{max}(#1)}$ $\newcommand{\min}[1]{\text{min}(#1)}$ $\newcommand{\supr}[1]{\text{sup}(#1)}$ $\newcommand{\infi}[1]{\text{inf}(#1)}$ $\newcommand{\ite}[1]{\text{int}(#1)}$ $\newcommand{\ext}[1]{\text{ext}(#1)}$ $\newcommand{\bdry}[1]{\partial #1}$ $\newcommand{\argmax}[1]{\underset{#1}{\text{argmax }}}$ $\newcommand{\argmin}[1]{\underset{#1}{\text{argmin }}}$ $\newcommand{\set}[1]{\left\{#1\right\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\tilde}{\text{~}}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\proj}{\text{proj}}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{\left| #1 \right|}$ $\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$ $\newcommand{\pare}[1]{\left(#1\right)}$ $\newcommand{\brac}[1]{\left[#1\right]}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\d}{\text d}$ $\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$ $\newcommand{\der}[2]{\frac{\d #1}{\d #2}}$ $\newcommand{\derw}[2]{\frac{\d #1^2}{\d^2 #2}}$ $\newcommand{\pder}[2]{\frac{\partial #1}{\partial #2}}$ $\newcommand{\pderw}[2]{\frac{\partial^2 #1}{\partial #2^2}}$ $\newcommand{\pderws}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\inner}[2]{\langle #1, #2 \rangle}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\nullspace}[1]{\mathcal{N}\pare{#1}}$ $\newcommand{\range}[1]{\mathcal{R}\pare{#1}}$ $\newcommand{\var}[1]{\text{var}\pare{#1}}$ $\newcommand{\cov}[1]{\text{cov}(#1)}$ $\newcommand{\cov}[2]{\text{cov}\pare{#1, #2}}$ $\newcommand{\tr}[1]{\text{tr}(#1)}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\ceil}[1]{\lceil#1\rceil}$ $\newcommand{\floor}[1]{\lfloor#1\rfloor}$ $\newcommand{\Re}[1]{\text{Re}(#1)}$ $\newcommand{\Im}[1]{\text{Im}(#1)}$ $\newcommand{\dom}[1]{\text{dom}(#1)}$ $\newcommand{\fnext}[1]{\overset{\sim}{#1}}$ $\newcommand{\transpose}[1]{{#1}^{\text{T}}}$ $\newcommand{\b}[1]{\boldsymbol{#1}}$ $\newcommand{\None}[1]{}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$ $\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$ $\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$ $\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$ $\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$ $\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
Definition: Subsequences

Suppose that $(x^{(n)})^\infty_{ n =1} $ is a sequence of points in a metric space $(X, d)$. Suppose that $n_1, n_2, … $ is an increasing sequence of integers which are at least as large as $m$, thus

$$1 \leq n_1 < n_2 < n_3 < … $$

Then we call the sequence $(x^{(n_j)})^\infty_{ j =1} $ a subsequence of the original sequence $(x^{(n)})^\infty_{ n =1} $.

Lemma

Let $(x^{(n)})^\infty_{ n =1}$ be a sequence in $(X, d)$ which converges to some limit $x_0$. Then every subsequence $(x^{(n_j)})^\infty_{ j=1}$ of that sequence also converges to $x_0$.

Definition: Limit Points

Suppose that $(x^{(n)})^\infty_{ n =1} $ is a sequence of points in a metric space $(X, d)$, and let $L \in X$.

We say that $L$ is a limit point of $(x^{(n)})^\infty_{n=1}$ iff for every $N \geq 1$ and $\epsilon > 0 $ there exists an $n \geq N $ such that $d(x^{(n)}, L) \leq \epsilon$.

Proposition

Let $(x^{(n)})^\infty_{ n =1} $ be a sequence of points in a metric space $(X,d) $, and let $L \in X $. Then the following are equivalent:

  • $L $ is a limit point of $(x^{(n)})^\infty_{ n =1} $.

  • There exists a subsequence $(x^{(n_j)})^\infty_{j=1}$ of the original sequence $(x^{(n)})^\infty_{ n =1}$ which converges to $L$.

Definition: Cauchy Sequences

Let $(x^{(n)})^\infty_{ n =1} $ be as sequence of points in a metric space $(X, d)$.

$(x^{(n)})^\infty_{ n =1} $ is a Cauchy sequence if

$$\forall \epsilon >0, \exists N \geq 1, \forall j, k \geq N, d(x^{(j)}, x^{(k)}) < \epsilon $$

Lemma : Convergent Sequences Are Cauchy Sequences

Let $(x^{(n)})^\infty_{ n =1} $ be a sequence in $(X, d) $ which converges to some limit $x_0 $. Then $(x^{(n)})^\infty_{ n =1} $ is also a Cauchy sequence.

Lemma

Every subsequence of a Cauchy sequence is also a Cauchy sequence.

Lemma

Let $(x^{(n)})^\infty_{ n =1} $ be a Cauchy sequence in $(X,d) $. Suppose that there is some subsequence $(x^{(n_j)})^\infty_{ j =1} $ of this sequence which converges to a limit $x_0 $ in $X$. Then the original sequence $(x^{(n)})^\infty_{ n =1} $ also converges to $x_0 $.

Lemma

Let $(x^{(n)})^\infty_{ n =1} $ be a Cauchy sequence in $(X,d)$.

Suppose that there is some subsequences $(x^{(n_j)})^\infty_{ j =1}$ of this sequence which converges to a limit $x_0$ in $X$. Then the original sequence $(x^{(n)})^\infty_{ n =1} $ also converges to $x_0$.

Definition: Complete Metric Spaces

A metric space $(X,d)$ is said to be complete iff every Cauchy sequence in $(X,d)$ is in fact convergent in $(X,d)$.

Proposition

Let $(X, d) $ be a metric space, and let $(Y, d|_{ Y \times Y }) $ be a subspace of $(X,d) $. If $(Y, d|_{ Y \times Y }) $ is complete, then $Y $ must be closed in $X$.

Proposition

Suppose that $(X, d) $ is a complete metric space, and $Y$ is a closed subset of $X$. Then the subspace $(Y, d|_{ Y \times Y }) $ is also complete.

Note

An incomplete metric space such as $(\Q,d) $ may be considered closed in some spaces ($\Q$ is closed in $\Q$) but not in others. (for instance, $\Q $ is not closed in $\R $).

It turns out that given any incomplete metric space $(X,d)$, there exists a completion $(\overline{X}, \overline{d})$, which is a larger metric space containing $(X,d)$ which is complete, and such that $X $ is not closed in $\overline{X} $(indeed, the closure of $X$ in $(\overline{X}, \overline{d})$ will be all of $\overline{X}$).