$\newcommand{\br}{\\}$
    $\newcommand{\R}{\mathbb{R}}$
    $\newcommand{\Q}{\mathbb{Q}}$
    $\newcommand{\Z}{\mathbb{Z}}$
    $\newcommand{\N}{\mathbb{N}}$
    $\newcommand{\C}{\mathbb{C}}$
    $\newcommand{\P}{\mathbb{P}}$
    $\newcommand{\F}{\mathbb{F}}$
    $\newcommand{\L}{\mathcal{L}}$
    $\newcommand{\spa}[1]{\text{span}(#1)}$
    $\newcommand{\dist}[1]{\text{dist}(#1)}$
    $\newcommand{\max}[1]{\text{max}(#1)}$
    $\newcommand{\min}[1]{\text{min}(#1)}$
    $\newcommand{\supr}{\text{sup}}$
    $\newcommand{\infi}{\text{inf}}$
    $\newcommand{\ite}[1]{\text{int}(#1)}$
    $\newcommand{\ext}[1]{\text{ext}(#1)}$
    $\newcommand{\bdry}[1]{\partial #1}$
    $\newcommand{\argmax}[1]{\underset{#1}{\text{argmax }}}$
    $\newcommand{\argmin}[1]{\underset{#1}{\text{argmin }}}$
    $\newcommand{\set}[1]{\left\{#1\right\}}$
    $\newcommand{\emptyset}{\varnothing}$
    $\newcommand{\tilde}{\text{~}}$
    $\newcommand{\otherwise}{\text{ otherwise }}$
    $\newcommand{\if}{\text{ if }}$
    $\newcommand{\proj}{\text{proj}}$
    $\newcommand{\union}{\cup}$
    $\newcommand{\intercept}{\cap}$
    $\newcommand{\abs}[1]{\left| #1 \right|}$
    $\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$
    $\newcommand{\pare}[1]{\left(#1\right)}$
    $\newcommand{\brac}[1]{\left[#1\right]}$
    $\newcommand{\t}[1]{\text{ #1 }}$
    $\newcommand{\head}{\text H}$
    $\newcommand{\tail}{\text T}$
    $\newcommand{\d}{\text d}$
    $\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$
    $\newcommand{\limsupu}[2]{\underset{#1 \to #2}{\lim\supr}}$
    $\newcommand{\liminfu}[2]{\underset{#1 \to #2}{\lim\infi}}$
    $\newcommand{\limd}[3]{\underset{#1 \to #2; #3}\lim}$
    $\newcommand{\der}[2]{\frac{\d #1}{\d #2}}$
    $\newcommand{\derw}[2]{\frac{\d #1^2}{\d^2 #2}}$
    $\newcommand{\pder}[2]{\frac{\partial #1}{\partial #2}}$
    $\newcommand{\pderw}[2]{\frac{\partial^2 #1}{\partial #2^2}}$
    $\newcommand{\pderws}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}}$
    $\newcommand{\inv}[1]{{#1}^{-1}}$
    $\newcommand{\inner}[2]{\langle #1, #2 \rangle}$
    $\newcommand{\nullity}[1]{\text{nullity}(#1)}$
    $\newcommand{\rank}[1]{\text{rank }#1}$
    $\newcommand{\nullspace}[1]{\mathcal{N}\pare{#1}}$
    $\newcommand{\range}[1]{\mathcal{R}\pare{#1}}$
    $\newcommand{\var}[1]{\text{var}\pare{#1}}$
    $\newcommand{\cov}[2]{\text{cov}(#1, #2)}$
    $\newcommand{\tr}[1]{\text{tr}(#1)}$
    $\newcommand{\oto}{\text{ one-to-one }}$
    $\newcommand{\ot}{\text{ onto }}$
    $\newcommand{\ipto}{\overset{\text{i.p.}}\longrightarrow}$
    $\newcommand{\asto}{\overset{\text{a.s.}}\longrightarrow}$
    $\newcommand{\expdist}[1]{\text{ ~ Exp}(#1)}$
    $\newcommand{\unifdist}[1]{\text{ ~ Unif}(#1)}$
    $\newcommand{\normdist}[2]{\text{ ~ N}(#1,#2)}$
    $\newcommand{\berndist}[2]{\text{ ~ Bernoulli}(#1,#2)}$
    $\newcommand{\geodist}[1]{\text{ ~ Geometric}(#1)}$
    $\newcommand{\poissondist}[1]{\text{ ~ Poisson}(#1)}$
    $\newcommand{\ceil}[1]{\lceil#1\rceil}$
    $\newcommand{\floor}[1]{\lfloor#1\rfloor}$
    $\newcommand{\Re}[1]{\text{Re}(#1)}$
    $\newcommand{\Im}[1]{\text{Im}(#1)}$
    $\newcommand{\dom}[1]{\text{dom}(#1)}$
    $\newcommand{\fnext}[1]{\overset{\sim}{#1}}$
    $\newcommand{\transpose}[1]{{#1}^{\text{T}}}$
    $\newcommand{\b}[1]{\boldsymbol{#1}}$
    $\newcommand{\None}[1]{}$
    $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$
    $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$
    $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$
    $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$
    $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$
    $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$
    $\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$
    $\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$
    $\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$
    $\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$
    $\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$
    $\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$
    $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$
    $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$
    $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$
    $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$
    $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$
    $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$
    $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$
    $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$
    $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$
    $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$
    $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$
    $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$
    $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$
    $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$
    $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$
    $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
  
  Definition
  
    
  
Let $L > 0 $ be a real number. A function $f: \R \to \C $ is periodic with period $L$ or $L$-perodic, if we have $f(x +L) =f(x)$ for every real number $x$.
  Example
  
  
    
  
$f(x) = \sin x$ and $g(x) = \cos x$ are $2 \pi $-periodic, and also $4 \pi $-periodic, $6 \pi$ -periodic , etc.
$f(x) = x$ is not periodic.
$f(x) = 1 $ is $L$-periodic for every $L$.
  Remarks
  
  
  
  
If a function is $L$-periodic, then we have $f(x + kL) = f(x) $ for every integer $k$.
  Definition: $\Z$-Periodic
  
    
  
If a function $f$ is $1$-periodic functions are sometimes also called $\Z$-periodic.
  Example
  
  
    
  
$\forall n $, the functions
$$\cos (2 \pi n x), \sin (2 \pi n x), e^{2 \pi i n x}$$are all $\Z $-periodic.
 Note
  
  
    
  
      For simplicity, we shall only deal with functions which are $\Z $-periodic.