$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\dist}[1]{\text{dist}(#1)}$ $\newcommand{\max}[1]{\text{max}(#1)}$ $\newcommand{\min}[1]{\text{min}(#1)}$ $\newcommand{\supr}[1]{\text{sup}(#1)}$ $\newcommand{\infi}[1]{\text{inf}(#1)}$ $\newcommand{\set}[1]{\{#1\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\proj}{\text{proj}}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{| #1 |}$ $\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$ $\newcommand{\pare}[1]{\left(#1\right)}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\d}{\text d}$ $\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\inner}[2]{\langle #1, #2 \rangle}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\var}[1]{\text{var}(#1)}$ $\newcommand{\tr}[1]{\text{tr}(#1)}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\Re}[1]{\text{Re}(#1)}$ $\newcommand{\Im}[1]{\text{Im}(#1)}$ $\newcommand{\dom}[1]{\text{dom}(#1)}$ $\newcommand{\fnext}[1]{\overset{\sim}{#1}}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$ $\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$ $\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$ $\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$ $\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$ $\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
Theorem 29.1

If $f $ is defined on an open interval containing $x_0 $, if $f $ assumes its maximum or minimum at $x_0 $ and $f$ is differentiable at $x_0 $, then $f’(x_0) = 0$.

Theorem 29.2: Rolle's Theorem

$f$ is continuous on $[ a, b ]$ and differentiable on $(a, b)$ and $f(a) = f(b)$

$$\exists x \in (a, b)\text{ s.t. }f’(x) = 0 $$

Theorem 29.3: Mean Value Theorem

$f$ is continuous on $[ a, b ]$ and differentiable on $(a, b)$

$$\exists x \in (a, b)\text{ s.t. } f’(x) = \frac{ f(b) - f(a)}{ b - a } $$

Corollary 29.4

Let $f$ be a differentiable function on $(a, b) $ such that $f’(x) = 0 $ for all $x \in (a, b)$. Then $f $ is a constant function on $(a, b)$.

Definition: Increasing, Decreasing, Strictly Increasing, Strictly Decreasing

Let $f$ be a real-valued function defined on an interval $I $. We say $f $ is strictly increasing on $I$ if

$x_1, x_2 \in I $ and $x_1 < x_2 $ imply $f(x_1) < f(x_2)$

$x_1, x_2 \in I $ and $x_1 > x_2 $ imply $f(x_1) > f(x_2)$

$x_1, x_2 \in I $ and $x_1 < x_2 $ imply $f(x_1) \leq f(x_2)$

$x_1, x_2 \in I $ and $x_1 > x_2 $ imply $f(x_1) \geq f(x_2)$

Corollary

Let $f $ be a differentiable function on an interval $(a, b)$. Then 1. $f $ is strictly increasing if $f’(x) > 0 $ for all $x(a, b)$ 2. $f $ is strictly decreasing if $f’(x) < 0 $ for all $x(a, b)$ 3. $f $ is decreasing if $f’(x) \geq 0 $ for all $x(a, b)$ 4. $f $ is decreasing if $f’(x) \leq 0 $ for all $x(a, b)$

Theorem 29.8: Intermediate Value Theorem for Derivatives

Let $f $ be a differentiable function on $(a, b) $. If $a< x_1 < x_2 < b $ and if $c$ lies between $f’(x_1) $ and $f’(x_2) $, there exists (at least one) $x $ in $(x_1, x_2) $ such that $f’(x) = c$.

Theorem 29.9

Let $f $ be a one-to-one continuous function on an open interval $I $, and let $J = f(I) $. If $f $ is differentiable at $x_0 \in I$ and if $f’(x_0) \neq 0 $, then $\inv{ f } $ is differentiable at $y_0 = f(x_0) $ and

$$(\inv{ f })^\prime (y_0) = \frac{ 1 }{ f’(x_0)} $$