$\newcommand{\br}{\\}$
$\newcommand{\R}{\mathbb{R}}$
$\newcommand{\Q}{\mathbb{Q}}$
$\newcommand{\Z}{\mathbb{Z}}$
$\newcommand{\N}{\mathbb{N}}$
$\newcommand{\C}{\mathbb{C}}$
$\newcommand{\P}{\mathbb{P}}$
$\newcommand{\F}{\mathbb{F}}$
$\newcommand{\L}{\mathcal{L}}$
$\newcommand{\spa}[1]{\text{span}(#1)}$
$\newcommand{\dist}[1]{\text{dist}(#1)}$
$\newcommand{\max}[1]{\text{max}(#1)}$
$\newcommand{\min}[1]{\text{min}(#1)}$
$\newcommand{\supr}[1]{\text{sup}(#1)}$
$\newcommand{\infi}[1]{\text{inf}(#1)}$
$\newcommand{\ite}[1]{\text{int}(#1)}$
$\newcommand{\ext}[1]{\text{ext}(#1)}$
$\newcommand{\bdry}[1]{\partial #1}$
$\newcommand{\argmax}[1]{\underset{#1}{\text{argmax }}}$
$\newcommand{\argmin}[1]{\underset{#1}{\text{argmin }}}$
$\newcommand{\set}[1]{\left\{#1\right\}}$
$\newcommand{\emptyset}{\varnothing}$
$\newcommand{\tilde}{\text{~}}$
$\newcommand{\otherwise}{\text{ otherwise }}$
$\newcommand{\if}{\text{ if }}$
$\newcommand{\proj}{\text{proj}}$
$\newcommand{\union}{\cup}$
$\newcommand{\intercept}{\cap}$
$\newcommand{\abs}[1]{\left| #1 \right|}$
$\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$
$\newcommand{\pare}[1]{\left(#1\right)}$
$\newcommand{\brac}[1]{\left[#1\right]}$
$\newcommand{\t}[1]{\text{ #1 }}$
$\newcommand{\head}{\text H}$
$\newcommand{\tail}{\text T}$
$\newcommand{\d}{\text d}$
$\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$
$\newcommand{\limd}[3]{\underset{#1 \to #2; #3}\lim}$
$\newcommand{\der}[2]{\frac{\d #1}{\d #2}}$
$\newcommand{\derw}[2]{\frac{\d #1^2}{\d^2 #2}}$
$\newcommand{\pder}[2]{\frac{\partial #1}{\partial #2}}$
$\newcommand{\pderw}[2]{\frac{\partial^2 #1}{\partial #2^2}}$
$\newcommand{\pderws}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}}$
$\newcommand{\inv}[1]{{#1}^{-1}}$
$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$
$\newcommand{\nullity}[1]{\text{nullity}(#1)}$
$\newcommand{\rank}[1]{\text{rank }#1}$
$\newcommand{\nullspace}[1]{\mathcal{N}\pare{#1}}$
$\newcommand{\range}[1]{\mathcal{R}\pare{#1}}$
$\newcommand{\var}[1]{\text{var}\pare{#1}}$
$\newcommand{\cov}[2]{\text{cov}(#1, #2)}$
$\newcommand{\tr}[1]{\text{tr}(#1)}$
$\newcommand{\oto}{\text{ one-to-one }}$
$\newcommand{\ot}{\text{ onto }}$
$\newcommand{\ceil}[1]{\lceil#1\rceil}$
$\newcommand{\floor}[1]{\lfloor#1\rfloor}$
$\newcommand{\Re}[1]{\text{Re}(#1)}$
$\newcommand{\Im}[1]{\text{Im}(#1)}$
$\newcommand{\dom}[1]{\text{dom}(#1)}$
$\newcommand{\fnext}[1]{\overset{\sim}{#1}}$
$\newcommand{\transpose}[1]{{#1}^{\text{T}}}$
$\newcommand{\b}[1]{\boldsymbol{#1}}$
$\newcommand{\None}[1]{}$
$\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$
$\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$
$\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$
$\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$
$\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$
$\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$
$\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$
$\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$
$\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$
$\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$
$\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$
$\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$
$\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$
$\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$
$\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$
$\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$
$\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$
$\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$
$\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$
$\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$
$\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$
$\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$
$\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$
$\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$
$\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$
$\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$
$\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$
$\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
1
Let $x_0 \in \overline{ E }, y_0 = f(x_0)$.
Since $x_0 \in E, \exists (x^{(n)})^\infty_{ n =1}, x_n \to x_0$.
Since $f$ is continuous, $x_n \to x_0 $ implies that $f(x_n) = f(x_0) $.
Since $f(x_n) \in f(E), \forall n, f(x_0) \in \overline{ f(E)} $
Definition: Inner Product Space
vector space with function $<, >: V \times V \to \C $
such that
$\inner{ v }{ w } = \overline{ \inner{ w }{ v }} $
$\inner{ v }{ v } \geq 0, \forall v \in V $
$\inner{ v }{ v } = 0 \iff v = 0$
$\inner{ cv + w }{ z } = c \inner{ v }{ z } + \inner{ w }{ z } $
Example
$C(\R / \Z , \C) = V $
vectors are functions
$\inner{ f }{ g } = \int_{ 0 }^{ 1 } f(x) \overline{ g(x)} \d x $
$\inner{ g }{ f } = \int_{ 0 }^{ 1 } g(x) \overline{ f(x)} \d x = \overline{ \int_{ 0 }^{ 1 } g(x) \overline{ f(x)} \d x } $
From those props, we have
- (Cauchy-Scharz inequality) $\abs{ \inner{ f }{ g }} \leq \sqrt[ ]{ \inner{ f }{ f }} \sqrt[ ]{ \inner{ g }{ g }}$
- For any inner vector space we define $2- $norm by
$$\norm{ v }_2 = \sqrt[ ]{ v, v } $$
Using Cauchy Schwaz,
$$\norm{ v+w }_2 \leq \norm{ v }_2 + \norm{ w }_2 $$
from other props, $\norm{ v }_2 \geq 0, \forall v \in V$
$$\norm{ v }_2 = 0 \implies v = 0_v $$
$$\norm{ aV }_2 = \abs{ a } \norm{ v }_2 $$
$$\norm{ av }_2 = \sqrt[ ]{ \inner{ av }{ av }} $$
$$\norm{ av }^2_2 = \inner{ av }{ av } = \br a \inner{ v }{ av } = a \overline{ \inner{ av }{ v }} = a \overline{ a } \overline{ \inner{ v }{ v }} = \abs{ a }^2 \norm{ v }_2$$
Theorem
: Cauchy-Schwarz
$\abs{ \inner{ f }{ g }} \leq \norm{ f }_2 \norm{ g }_2$
$\inner{ v }{ v } \geq 0, v = f - tg, t \in \R$
$$\inner{ f-tg }{ f-tg } \geq 0 $$
$$\inner{ f }{ f-tg } - t \inner{ g }{ f-tg } $$
$$\inner{ f }{ f } - t \inner{ f }{ g } - t \inner{ g }{ f } + t^2 \inner{ g }{ g } $$
minimum occurs when
$t = \frac{ -b }{ 2a }, a = \norm{ g }_2^2 $
$b = - (\inner{ f }{ g } +? \inner{ g }{ f }) $
$b = -2 (\Re{(f, g)}) $
$$\norm{ f + g }_2 = \norm{ f }_2 + \norm{ g }_2 $$
$$\begin{align}
\norm{ f+g }^2_2 &= \inner{ f }{ f } + \inner{ f }{ g } + \inner{ g }{ f } + \inner{ g }{ g } \br
&= \inner{ f }{ f } + 2 \Re{ \inner{ f }{ g }} + \inner{ g }{ g } \br
\leq \inner{ f }{ f } + 2 \abs{ \inner{ f }{ g }} + \inner{ g }{ g } \br
\leq \inner{ f }{ f } + 2 \norm{ f }_2 \norm{ g }_2 + \inner{ g }{ g } \br
= (\norm{ f }_2 + \norm{ g }_2)^2
\end{align}$$
know the definition of
$\inner{ f }{ g } V = C(\R / \Z , \C) $
Know how to compute
$$\inner{ e_n }{ e_m } = \begin{cases}
\int_{ 0 }^{ 1 } \exp 2 \pi i (n - m)x\d x = \frac{ \exp (2 \pi i (n - m))}{ 2 \pi i (n - m)} \big |^1_0 = \frac{ e_n(1)^2 - e_k(0)}{ 2 \pi i (n - m)}\br
\int_{ 0 }^{ 1 } 1 \d x
\end{cases} $$
$e_n (0) = e_n (1) $ by periodicity
$\inner{ f }{ g } = 0 $
$$f+g ^2_2 = \norm{ f }^2_2 + \norm{ g }^2_2$$
Find function sequence such that
$f^{(n)}$ continuous, $f$ continuous.
- $f^{(n)} \to f$, $L^2 $ but not uniformly
- $f^{(n)} \to f $ L^2$ but not pointwise
- pointwise but not $L^2 $
Idea:
$L^2 $ convergence measures area between functions
uniform convergence measures max height diff
if $f $ is analytic find $c_n $
2
Example
$X$ connected.
show $\forall, a, b,d(a, b) > 0, r \in [ 0, d(a, b) ], \exists x_r, d(a, x_r) = r $
Proof
</span>
</span>
<span class="proof__expand"><a>[expand]</a></span>
Choose $U = \set{y \in X : d(a, y) < r} = B(a, r)$ open set $U \neq \emptyset$.
Choose $V = \set{y \in X : d(a, y) > r} \neq \emptyset, V$ contains $b$.
Either $V \cup U = X$ or $V \cup U \neq X $.
$U, V$ open disjoint non-empty, contradicts that $X$ is connected.
Thus $\exists x_r \not \in U, x_r \not \in V$.
$d(a, x_r) \geq r$ and $d(a, x_r) \leq r$.
Then $d(a, x_r) = r$
$s(a, r) = u $ open set $u \neq \emptyset $
$V = \set{ y \in X: d(a, y) > r } \neq \emptyset $
New question: Can you show $B(a,r) $ is open?
Proof
</span>
</span>
<span class="proof__expand"><a>[expand]</a></span>
Pick $y \in B(a, r), S = d(a, y) $
$r_0 = r - S $
$B(y, r_0) \leq B(a, r) $
$z \in B(y, r_0) $
$d(z, a) < r $
(This shows $z \in B(a, r)$)
$d(z, a) \leq d(z, y) + d(a, y) < s + r_0 = r $
12
$f: X \to X, k \in [0, 1)$
$$d(f(x), f(y)) \leq k d (x, y) $$
points get “closer”
Show $\exists$ unique point $x_0 $ such that $f(x_0) = x_0$
Two points such that $f(a) = a & f(b) = b$
$d(f(a), f(b)) \leq kd(a, b)$
$d(a, b) \leq k d(a, b)$
$d(a, b) = c$
Pick $x_0 \in X$
$x_n = f(x_{n - 1})$
$d(x_0, x_1) = d$
$d(x_1, x_2) = d(f(x_0), f(x_1)) \leq k d(x_0, d_1) = k d$
$d(x_2, x_3) = d(f(x_1, f(x_2))) \leq k d(x_1, x_2) \leq k^2 d$
$d(x_n, x_3) = k^n d $
Maybe this is Cauchy $n < m $
$d(x_n, x_m)$
$d(x_n, x_m) \leq k^n d$
$d(x_n, x_{n+2}) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2})$
$$\leq k^n d + k^{n +1} d $$
$$d(x_n, x_{n+3}) \leq k^n d + k^{n+1} d + k^{n+2} d $$
$$d(x_n, x_m) \leq k^n d + k^{n+1}d + … + k^{m - n - 1}d $$
$$\leq d (\sum_{ j = n }^{ \infty } k^j) $$
$\exists N$ such that if $n > N $
$\sum_{ j=n }^{ \infty }k^j < \epsilon / d $
$d(x_n, x_m) < \epsilon $ if $m> n> N$
$x_n $ is Cauchy, so it converges to a point called $x^* $
$f(x^*) = f(\limu{ n }{ \infty } x_n) \br $
$= \limu{ n }{ \infty } f(x_n) $\br
$= \limu{ n }{ \infty } x_{n+1} = x^* $
5
$C_c(\R^ -) =$ function such that $f : \R \to \R $
if $f(x) \neq 0 x \in$ compact set
given $f, \exists M $ such that if
$\abs{ x } \geq M, f(x) = 0 $
$C_0$
bell curve $e^{- \frac{1}{x^2}}$
$C_b(x) $
bounded continuous functions
If $f \in C_c(\R) $ f \in c_0(\R)
$g \in C_0 (\R) show $ show g is bounded.
$\limu{ x}{ \infty } g(x) = 0$ implies
$\exists M_1 $ such that $\abs{ g(x)} \leq 1 $ if $x > M_1 $
$\exists M_2 $ such that $\abs{ g(x)} \leq 1 $ if $x < M_2 $
$g([M_2, M_1]) is compact $
$\abs{ g(x)} \leq M_3 $ on $M_2, M_1 $
$\abs{ g(x)} \leq \max{ \set{ M_3, 1 }} $
$g $ is bounded
$C_c(\R) \leq C_0(\R) \leq C_b (\R) $
let $g(x) = e^{ - \frac{ 1 }{ x^2 }} \in C_0$
$h(x) = 2$