Subspaces.

$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\set}[1]{\{#1\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{| #1 |}$ $\newcommand{\pare}[1]{\left\(#1\right\)}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
Definition: Subspaces

A subset $W$ of a vector space $V$ over a Field $F$ is called a subspace if $W$ is a vector space over $F$ is a vector space, denoted by $W \leq V$.

Note

In any vector space $V, V$ itself and $\set{0}$ are subspaces. The latter is called the zero subspace of $V$.

Theorem 1.3: Properties of Subspaces

Additionally, a subset $W$ of a vector space $V$ is a subspace of $V$ if and only if the following three properties hold.

  1. $W$ has a zero vector.
  2. $x + y \in W$ whenever $x\in W$ and $y \in W$. ($W$ is closed under addition)
  3. $cx \in W$ whenever $c \in F$ and $x \in W$. ($W$ is closed under scalar multiplication)
Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

Assume that $W$ is a subspace.

This implies from the definition of subspace that $W$ itself is a vector space over $F$. then for all three of the properties are satisfiled.


Assume that the three properties holds for $W$. We need to proof that $W$ is a subspace of $V$, i.e. itself is a vector space.

  1. $w_1 + w_2 = w_2 + w_1, \forall w_1, w_2 \in W \subseteq V$
  2. $(w_1 + w_2) + w_3 = w_1 + (w_2 + w_3), \forall w_1, w_2, w_3 \in W \subseteq V$
  3. The third property.
  4. let $c= -1 \in F$, $\forall x \in W \subseteq V, x + (-1)x = (1-1) x = 0$
  5. $1w=w, \forall w \in W \subseteq V$
  6. $\forall a,b \in F, \forall x \in W \subseteq V, (ab)x=a(bx)$
  7. $\forall a \in F, \forall x, y\in W \subseteq V, a(x+y)=ax+ay$
  8. $\forall a,b \in F, \forall x \in W \subseteq V, (a+b)x = ax+ bx$
Example: $\R^2/\R=$ XY-plane
Example: X-axis

W=${(a,0)|a\in\R}$

  1. $(0,0)\in W$
  2. $(a,0) + (b,0) = (a+b, 0) \in W, V$
  3. $\lambda \in \R, \lambda(a, 0) = (\lambda a, 0) \in W$

$\therefore W$ is a subspace of $\R^2$

Any straight line in $\R^2$ that passes through the origin is a subspace of $\R^2$

Example

$W = \set{A\in M_{n\times n}(\R)|A^T=A}=$ Set of all symmetric matrices is a subspace.

Set of all diagonal matrices is a subspace.

Set of all invertible matrices is NOT a subspace.

Set of all upper triangular matrices is a subspace.

Set of all lower triangular matrices is a subspace.

$W = \set{A\in M_{n\times n}|A^2=A}$ is NOT a subspace.

$W=\set{A\in M_{n\times n}(R)| \tr{A}=0}$ is a subspace.

$\R^n$, hyperplanes that passes through the origin $a_1x_1+a_2x_2+…+a_nx_n=0$ are subspaces.

Example: $\R^5$

$\R^5, W =\set{(x_1, x_2,x_3,x_4,x_5)\in \R^5 | x_1-x_2+x_5=0, 2x_3+7x_4=0}$. subspace.

  1. $(0,0,0,0,0) \in W$, since
    $0- 0+0 =0$
    $2\cdot0+7\cdot0=0$

  2. $(x_1, x_2,…,x_5)\in W \implies x_1-x_2+x_5=0 (1), 2x_3+7x_4=0 (2)$
    $(y_1,y_2,…,y_5) \in W \implies y_1-y_2+y_5=0 (3), 2y_3+7y_4=0 (4)$
    $(x_1+y_1,x_2+y_2,…x_5+,y_5) \in W$
    $(1)+(3) = 0, (2)+(4) = 0$

  3. trivial

Theorem 1.4

The intersection of any number (uncountable is also included) of subspaces of $V$ is again a subspace of $V$.

Remarks

Union of TWO subspaces may not be a subspace in general.

Union is a subspace if and only if one subspace is the subset of the other.