$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\set}[1]{\{#1\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{| #1 |}$ $\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$ $\newcommand{\pare}[1]{\left\(#1\right\)}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\d}{\text d}$ $\newcommand{\limu}[2]{\underset{#1 \to #2}\lim}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\inner}[2]{\langle #1, #2 \rangle}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\tr}[1]{\text{tr}(#1)}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\Re}[1]{\text{Re}(#1)}$ $\newcommand{\Im}[1]{\text{Im}(#1)}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\vcw}[2]{\begin{matrix} #1 \br #2 \end{matrix}}$ $\newcommand{\vce}[3]{\begin{matrix} #1 \br #2 \br #3 \end{matrix}}$ $\newcommand{\vcr}[4]{\begin{matrix} #1 \br #2 \br #3 \br #4 \end{matrix}}$ $\newcommand{\vct}[5]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \end{matrix}}$ $\newcommand{\vcy}[6]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{matrix}}$ $\newcommand{\vcu}[7]{\begin{matrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{matrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
Definition: Inner Product

$F = \R$ or $\C$.

Let $V $be a vector space over a $F$,

A function $\inner{}{} : V \times V \to F$ is called an inner product if it satisfies the following properties:

  1. $\inner{ x + z }{ y } = \inner{ x }{ y } + \inner{ z }{ y }, \forall x, y, z \in V $
  2. $\inner{ cx }{ y } = c \inner{ x }{ y }, \forall x, y \in V, \forall c \in F $
  3. $\inner{ x }{ y } = \overline{ \inner{ y }{ x }}$, where $\overline{ z } $ for $z \in F $ means complex conjugate.
  4. $\inner{ x }{ x } > 0 \if x \neq 0 $
Example

$V = \R ^n , F = \R$

$x = (a_1, a_2, …, a_{ n }) $

$y = (b_1, (b_2, …, (b_{ n }) $

Define $\inner{ x }{ y } = \sum_{ i=1 }^{ n } a_ib_i $

$z = (c_1, _2, …, _{ n }) $

$\begin{align*} \inner{ x+z }{ y } &= \sum_{ i=1 }^{ n } (a_i + c_i) b_i \br &= \inner{ x }{ y } + \inner{ z }{ y } \end{align*}$

Example

$V = \C^n, F = \C $

$x = (a_1, (a_2, …, (a_{ n }) , a_i \in \C$

$y = (b_1, (b_2, …, (b_{ n }), b_i \in \C $

Define $\inner{ x }{ y } = \sum_{ i=1 }^{ n } a_ib_i $

All first three axioms stands,

(iv) $\inner{ x }{ x } = \sum_{ i = 1 }^{ n } a_i \overline{ a_i } = \sum_{ i=1 }^{ n } \abs{ a_i }^2 $

Example

$Continuous [0, 1] / \R = f: [0, 1] \to \R, f$is continuous on $[0, 1] $

$f,g \in continuous [0, 1] $

$\inner{ f }{ g } = \int_{ 0 }^{ 1 } f(x) g(x) \d x $

Example

$\P_n(x) / \R$

$\inner{ f(x)}{ g(x)} = \int_{ 0 }^{ 1 } f(x) g(x) \d x$

$\P_n(x)/ \R \cong \R^{n+1} $

$a_0 + a_1x + … + a_nx^n $i.e. ${\Vcr{ a_1 }{ a_2 }{ … }{ a_n }} $

$f(x), g(x) \in \P_n(x)$

$\inner{ f(x)}{ g(x)} = \sum_{ i=1 }^{ n } a_ib_i $

$f(x) = \sum_{ i=0 }^{ n } a_i x^i$

$\inner{ f(x)}{ g(x)} = \sum_{ i=1 }^{ n } a_ib_i$

$f(x) = \sum_{ i=0 }^{ n } a_i x^i $

$g(x)= \sum_{ i=0 }^{ n } b_i x^i $

Theorem 6.1

Let $\inner{ }{ }$ be an inner product space over $F$, then

  1. $\inner{x}{y + w} = \inner{x}{y} + \inner{x}{w} , \forall x, y, w \in V, \forall x, y \in V, \forall c \in F$
  2. $\inner{x}{cy} = \overline{c} \inner{x}{y} , \forall x, y \in V, \forall c \in F$
  3. $\inner{0}{x} = \inner{x}{0} = 0, \forall x \in V, 0 \in V $
  4. $\inner{x}{x} = 0 \iff x = 0$
  5. $\if \inner{x}{y} = \inner{x}{z}, \forall x \in V$, then $y = z $(notice: for all $x$ in $V$)
Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

1. $\inner{x}{ y + w} = \inner{ x}{ y } + \inner{ x}{ w} , \forall x, y, w \in V, \forall x, y \in V, \forall c \in F$

$\begin{align*} \inner{x}{ y + w} &= \overline{ \inner{y+w}{ x}} \br &= \overline{ \inner{y}{ x} + \inner{w}{ x}} \br &= \overline{ \inner{y}{ x}} + \overline{ \inner{w}{ x}} \br &= \inner{x}{ y} + \inner{x}{ w} \end{align*}$


2. $\inner{x}{ cy} = \overline{ c } \inner{x}{ y} , \forall x, y \in V, \forall c \in F$

$\begin{align*} \inner{x}{ cy} &= \overline{ \inner{cy}{ x}} \br &= \overline{ c\inner{y}{ x}} \br &= \overline{ c } \overline{ \inner{y}{ x}} \br & = \overline{ c } \inner{x}{ y} \end{align*}$


3. $\inner{0}{ x} = \inner{x}{ 0} = 0, \forall x \in V, 0 \in V $

$\begin{align*} \inner{0}{ x} &= \inner{0 \cdot x}{ x} \br &= 0 \inner{x}{ x} = 0 \end{align*}$


4. $\inner{x}{ x} = 0 \iff x = 0$

Assume $\inner{x}{ x} = 0 $

$x = 0 \implies \inner{0}{ 0} = 0$ by $(3) x= 2x \implies x= 0$

By contradiction assume that $x \neq 0 $, then by definition of inner product $\inner{x}{ y} > 0y$.


5. $\if \inner{x}{ y} = \inner{x}{ z} \forall x \in V$, then $y = z $

$\implies \inner{ x}{ y} - \inner{x}{ z} = 0 $

$\implies \inner{x}{ y-z} = 0 , \forall x \in V$

choose $x = y -z $

$\implies \inner{y -z}{ y -z} = 0$

$\implies y - z= 0$ by $(4) $

$\implies = z $

$\inner{ y}{ x} = \inner{z }{ x } \forall x \in V $

$\implies y = 2 $

Definition: Norm of a Vector

$V $is a inner product space over a field $F $, let $x \in V$. The norm of $x$ is defined as $\norm{ x } = \sqrt{ \inner{x}{ x}} $

Example

$\R^n$, inner product space with usual dot product. $x = (a_1, _2, …, _{ n }) $

$\norm{ x } = \sqrt{ a^2_1 + a^2_2 + … + a^2_n } $

$\begin{align*} \norm{ x } &= \sqrt{ \inner{ x}{ x}} \br &= \sqrt{ \sum_{ i = 1 }{n} a_i a_i} \br &= \sqrt{ \sum_{ i = 1 }{n} a_i^2} \br \end{align*}$

Example

$M_{n \times n}(\R) $

$\inner{A}{ B} = \tr(B^* A) = \tr(\inv{ B }A) $

$\inner{A}{ A} = \sum_{ j=1 }^{ n } \sum_{ i = 1 }^{ n } a_{ij}^2, a_{ij} \in \R, \overline{ B } = B, B^* = (\overline{ B })^t = B^t $

$\norm{ A } = \sqrt{A, A} = \sqrt{ \sum_{ j=1 }^{ n } \sum_{ i = 1 }^{ n } a_{ij}^2 }$

Frobenius norm of a matrix.

Definition: Conjugate Transpose

Let $A \in M_{m \times n} (F)$. We define the conjugate transpose or adjoint of A to be the $n \times m$ matrix $A^* $such that $(A^*)_{ij} = \overline{A_{ji}}, \forall i, j$.

Definition: Frobenius Inner Product

Let $V = M_{n \times n} (F)$, and define $\inner{ A }{ B } = tr(B^* A)$ for $A, B \in V. $(Recall that the trace of a matrix $A $ is defined by $\tr{ A } = \sum_{ i=1 }^{ n } A_{ii} $). This inner product on $M_{n \times n} (F) $ is called the Frobenius inner product.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

Let $A, B, C \in V $.

1. $\inner{ A + B }{ C } = \inner{ A }{ C } + \inner{ B }{ C }$

$\begin{align*} \inner{ A + B }{ C } &= \tr{ C^* (A + B)} = \tr{ C^*A + C^*B } \br &= \tr{ C^*A } + \tr{ C^*B } = \inner{ A }{ C } + \inner{ B }{ C } \end{align*}$

2. $\inner{ cA }{ B } = c \inner{ A }{ B } $

$\begin{align*} \inner{ cA }{ B } &= \tr{ B^*(cA)} = \tr{ c(B^*A)} = c\tr{ B^*A } \br &= c \inner{ A }{ B } \end{align*}$

3. $\overline{ \inner{ A }{ B }} = \inner{ B }{ A } $

(*) It’s a little complicated, prove it yourself. Hint: $tr(AB) = tr(BA) $.

4. $\inner{ A }{ A } > 0 $

$\begin{align*} \inner{ A }{ A } &= \tr{ A^*A } = \sum_{ i = 1 }^{ n } (A^* A)_{ii} = \sum_{ i=1 }^{ n } \sum_{ k = 1 }^{ n } (A^*)_{ik}A_{ki} \br &=\sum_{ i=1 }^{ n } \sum_{ k = 1 }^{ n } \overline{ A_{ik}}A_{ki} = \sum_{ i=1 }^{ n } \sum_{ k = 1 }^{ n } \abs{ A_{ki}}^2 > 0 \end{align*}$

Therefore $\inner{ A }{ B } $ is an inner product over $V $.

Definition: Inner Product Space

A vector space $V $ over $F $ endowed with a specific inner product is called an inner product space.

If $F = \C $, we call $V $ a complex inner product space.
If $F = \R $, we call $V $ a real inner product space.

Theorem 6.2

$V $is inner product space over $F $.

  1. $\norm{ cx } = \abs{ c } \norm{ x } \forall x \in V, v \in F$
  2. $\norm{ x } = 0 \iff x = 0$
  3. (Cauchy-Schwarz Inequality) $\abs{ \inner{x}{ y}} \leq \norm{ x } \norm{ y }, \forall x, y \in V$
  4. (Triangle Inequality) $\norm{ x + y } \leq \norm{ x } + \norm{ y }, \forall x, y \in V$

$\begin{align*} \norm{ x } &= \sqrt{\inner{ x}{ x}} \br &= \sqrt{ c \cdot \overline{ c } \inner{ x}{ x}} \br &= \sqrt{ \abs{ c }^2 \inner{x}{ x}} \br &= \abs{ c } \inner{x}{x} \end{align*}$

$x = 0 \iff \inner{x}{ x} = 0 \iff \sqrt{ \inner{x}{ x}} = 0 \iff \norm{ x }$

Definition: Orthogonal

Let $V $ be a inner product space over a field $F $.

A set of vector $S \subseteq V $ called an orthogonal is $\inner{ v}{ w} = 0, \forall v, w \in S$ and $v \neq w$.

A vector $x \in V$ is called a unit vector if $\norm{ x } = 1 $

A set of vectors $S \subseteq V $ is called a orthogonal set if $S $is orthogonal i.e. $\inner{v}{ w} = 0 \forall v, u \in S, v \neq w$ and all the vectors of $S $are unit vectors i.e. $\norm{ v } = 1 v, v \in S $.

Remarks

We know that $\inner{0}{ x} = \inner{x}{ 0} = 0, \forall x \in V$

i.e. $0$ vector is orthogonal to every other vector.

Because of this a orthogonal set $S$ may contain the null vector, In particular orthogonal set may not be linearly independent in general.

However, if $S $ is orthonormal set, then $0 \notin S$, because $\norm{ 0 } \neq 1$.