Linear Transformation, Identity Transformation, Zero Transformation, Kernel (Null Space), Range (Image), Nullity, Rank, One-to-One, Onto.

$\newcommand{\br}{\\}$ $\newcommand{\R}{\mathbb{R}}$ $\newcommand{\Q}{\mathbb{Q}}$ $\newcommand{\Z}{\mathbb{Z}}$ $\newcommand{\N}{\mathbb{N}}$ $\newcommand{\C}{\mathbb{C}}$ $\newcommand{\P}{\mathbb{P}}$ $\newcommand{\F}{\mathbb{F}}$ $\newcommand{\L}{\mathcal{L}}$ $\newcommand{\spa}[1]{\text{span}(#1)}$ $\newcommand{\set}[1]{\{#1\}}$ $\newcommand{\emptyset}{\varnothing}$ $\newcommand{\otherwise}{\text{ otherwise }}$ $\newcommand{\if}{\text{ if }}$ $\newcommand{\union}{\cup}$ $\newcommand{\intercept}{\cap}$ $\newcommand{\abs}[1]{| #1 |}$ $\newcommand{\pare}[1]{\left\(#1\right\)}$ $\newcommand{\t}[1]{\text{ #1 }}$ $\newcommand{\head}{\text H}$ $\newcommand{\tail}{\text T}$ $\newcommand{\d}{\text d}$ $\newcommand{\inv}[1]{{#1}^{-1}}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\rank}[1]{\text{rank }#1}$ $\newcommand{\nullity}[1]{\text{nullity}(#1)}$ $\newcommand{\oto}{\text{ one-to-one }}$ $\newcommand{\ot}{\text{ onto }}$ $\newcommand{\Vcw}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Vce}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Vcr}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Vct}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Vcy}[6]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \end{bmatrix}}$ $\newcommand{\Vcu}[7]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \br #6 \br #7 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Mqr}[4]{\begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqt}[5]{\begin{bmatrix} #1 & #2 & #3 & #4 & #5 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mrq}[4]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \end{bmatrix}}$ $\newcommand{\Mtq}[5]{\begin{bmatrix} #1 \br #2 \br #3 \br #4 \br #5 \end{bmatrix}}$ $\newcommand{\Mqw}[2]{\begin{bmatrix} #1 & #2 \end{bmatrix}}$ $\newcommand{\Mwq}[2]{\begin{bmatrix} #1 \br #2 \end{bmatrix}}$ $\newcommand{\Mww}[4]{\begin{bmatrix} #1 & #2 \br #3 & #4 \end{bmatrix}}$ $\newcommand{\Mqe}[3]{\begin{bmatrix} #1 & #2 & #3 \end{bmatrix}}$ $\newcommand{\Meq}[3]{\begin{bmatrix} #1 \br #2 \br #3 \end{bmatrix}}$ $\newcommand{\Mwe}[6]{\begin{bmatrix} #1 & #2 & #3\br #4 & #5 & #6 \end{bmatrix}}$ $\newcommand{\Mew}[6]{\begin{bmatrix} #1 & #2 \br #3 & #4 \br #5 & #6 \end{bmatrix}}$ $\newcommand{\Mee}[9]{\begin{bmatrix} #1 & #2 & #3 \br #4 & #5 & #6 \br #7 & #8 & #9 \end{bmatrix}}$
Definition: Linear Transformation

$V/F, W$ is a vector space over a field $F$.

A linear transformation (or linear map) $T:V \to W$ is a function which satisfies the following properties:

  1. $T(v_1 + v_2) = T(v_1) + (v_2), \forall v_1, v_2 \in V.$
  2. $T(cv) = cT(v), \forall v \in V, c \in F.$
Example

$T: \R^3 \to \R^2, T(a_1, a_2, a_3) = (2a_1-a_3, a_2 - a_1).$

$v_1 = (a_1, a_2, a_3), v_2 = (b_1, b_2, b_3).$

$\begin{align*} &T((a_1, a_2, a_3) + (b_1, b_2, b_3)) \br &=T(a_1 + b_1, a_2 + b_2, a_3 + b_3) \br &=(2(a_1 + b_1) - (a_3 + b_3), (a_2 + b_2) - (a_1 + b_1)) \end{align*}$

$T(c(a_1, a_2, a_3)) = T((ca_1, ca_2, ca_3)) = (c(2a-a_3), c(a_2 - a_1))$

$T((a_1, a_2, a_3)) = (2a_1-a_3, a_2 - a_1)$

$T((b_1, b_2, b_3)) = (2b_1-b_3, b_2 - b_1)$

$\begin{align*} &T((a_1, a_2, a_3)) + T((b_1, b_2, b_3)) \br &= (2a_1-a_3, a_2 - a_1) + (2b_1-b_3, b_2 - b_1) \br &= … \end{align*}$

Example: reflection about x-axis

$T: \R^2 \to \R^2, T ((a,b)) = (a, -b)$

Example: Rotation

$T: \R^2 \to \R^2, T(P)=P'. P=(a,b).$

$T(P) = (a\cos \theta - b \sin \theta, a \sin \theta + b \cos \theta)$

Properties: Basic Properties of Linear Transformation
  1. If $T: V \to W$ a linear transformation,
  • $T(0) = 0$

  • $T(v_1 - v_2) = T(v_1) - T(v_2)$

  1. $T: V \to W$is a linear transportation$\iff T(cv_1 + v_2) = c T(v_1) + T(v_2), \forall v_1, v_2 \in V, \forall c \in F$.
Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$T(0) = T(0 + 0) = T(0) + T(0) = T(0) + 0 = T(0) + T(0)$

By cancellation law, $0 = T(0)$.

$T(v_1 - v_2) = T(v_1 + (-v_2))$.

Example

$\R^2 \to \R^2$.

$T(x, y) = T(x + y, x-y + 1)$ is not a linear transformation.

$T(x, y) = (x, \abs{y})$ is not a linear transformation.

Example

$T: M_{m \times n}(\R) \to M_{n \times m} (\R)$.

$T(A) = A^t$ is a linear transformation.

Example

$T: \P_n(x) \to \P_{n-1}(x)$.

$T(f(x)) = f'(x)$ is a linear transformation.

$\begin{align*} T(cf(x) + g(x)) &= (cf(x) + g(x))' \br &= cf'(x) g'(x) \br &= cT(f(x)) + T(g(x)) \end{align*}$

Example

$T:\R^2 \to \R^3$.

$T(a_1, a_2) = (a_1, a_2, 0)$

Definition: Identity Transformation

$I: V \to V. I(v) = v, \forall v \in V$.

Definition: Zero Transformation

$T: V \to W. T(x) = 0, \forall x \in V$.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$T(cx + y) = 0$. $T(cx) + T(y) = 0 + 0 = 0$.

Definition: Kernel (Null Space), Range (Image)

$T: V \to W$ is a linear transformation.

The kernel (or null space) of $T$ denoted by $N(T)$, and is defined as:

$$N(T) = \set{v \in V \mid T(v) = 0}$$

The range (or image) of $T$ is denoted by $R(T)$, and is defined as:

$$R(T)= \set{T(x) \in W \mid x \in V}$$

Theorem 2.1

$T: V \to W$ is a linear transformation.
$N(T)$ is a subspace of $V$, and $R(T)$ is a subspace of $W$.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$x, y \in N(T) \implies T(x) = 0, T(y) = 0$.
$T(x + y) = T(x) + T(y) = 0 + 0 = 0.$
$\therefore x + y \in N(T)$.

$x \in N(T) \implies T(x) = 0, c \in F$.
$T(cx) = cT(x) = c0 = 0$
$\therefore cx \in N(T)$.

$N(T) \leq V$.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$w_1, w_2 \in R(T) \implies \exists x_1, x_2 \in V, s.t. T(x_1) = w_1, T(x_2) = w_2$.
$w_1 + w_2 = T(x_1) + T(x_2) = T(x_1 + x_2)$. $\therefore (w_1 + w_2) \in R(T)$.

$w \in R(T) \implies \exists x \in V s.t. T(x) = w$.
$cw = cT(x) = T(cx)$.
$\therefore cw \in R(T)$.

Definition: Nullity, Rank

$T:V \to W$ is a linear transformation.

The dimension of the null space $N(T)$ is called the nullity of $T$ and is denoted by $\nullity{T}$. i.e.

$$\nullity{T} := \dim{N(T)}$$

The dimension of the image $R(T)$ is called the rank of $T$ and is denoted by $\rank{T}$. i.e.

$$\rank{T} := \dim{R(T)}$$

Example

$T: \R^n \to \R^m$. $T(x) = Ax, \forall x \in \R^n$.

$\begin{align*} T(cx + y) &= A(cx + y) \br &= A(cx) + Ay \br &= cAx + Ay \br &= cT(x) + T(y) \end{align*}$

$\rank{A} = \rank{T}$.

Theorem 2.2

$T:V \to W$ is a linear transformation.
If $\beta = \set{x_1, x_2, …, x_{n}}$ is a basis of $V$, then

$$R(T) = \spa{T(x_1), T(x_2), … T(x_n)}$$

Theorem 2.3: Dimension Theorem

Let $T: V \to W$ be a linear transformation.
If $V$ is a finite-dimensional vector space, then

$$\begin{align*} \dim V &= \rank{T} + \nullity{T} \br &=\dim R(T) + \dim N(T) \end{align*}$$

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

Let $\dim N(T) = k, N(T) \leq V$, and $\beta = \set{x_1, x_2, …, x_{k}}$ be a basis of $N(T)$.

Since $N(T) \leq V, \beta$ can be extended to $\gamma $, a basis of $V$. i.e. $\gamma = \beta \cup \set{y_1, y_2, …, y_{n-k}} = \set{x_1, …, x_k, y_1, …, y_{n-k}}$, where $n = \dim V$.

Need to prove $S = \set{T(v_{k + 1}), T(v_{k + 2}), …, T(v_{n})}$ is a basis for $R(T)$.


First we prove that $S $ generates $R(T)$.

Let $w \in R(T)$, then $\exists x \in v$ s.t. $T(x) = w$.

Since $\beta$ is a basis of $V, \exists c_1, c_2, …, c_{n} \in F$, s.t. $x = \sum c_ix_i$.

Then

$$T(x) = T(\sum_{i=1}^{n} c_ix_i) = \sum_{i=1}^{n} c_i T(x_i)$$

Since $\forall i = 1, 2, …, k, T(v_i) = 0$,

$$\begin{align*} R(T) &= \spa{T(x_i), …, T(x_k), T(y_1), … , T(y_{n-k})} \br &= \spa{T(y_1), …, T(y_{n-k})} \end{align*}$$

$\therefore R(T) \subseteq \set{T(y_1), T(y_2), …, T(y_{ n-k })}$.


Next we need to prove this set is linearly independent.

Consider the equation, $a_1T(y_1) + … + a_{n-k}T(y_{n-k}) = 0$

$\implies T(a_1y_1 + a_2y_2 + … + a_{n-k} y_{n-k}) = 0$

$\implies \sum_{i=1}^{n} a_iy_i \in N(T)$

Since $\beta = \set{x_1, x_2, …, x_{k}}$ is a basis of $N(T)$,

$\exists b_1, b_2, …, b_{k} \in F$ s.t.

$$\sum_{i=1}^{n-k} a_iy_i = b_1x_1 + b_2x_2 + … + b_{k} x_{k}$$

$-b_1x_1 -b_2x_2 … -b_{k} x_{k} + a_1y_1 + a_2y_2 + … + a_{n-k} y_{n-k}= 0$(*)

Since $\set{x_1, x_2, …, x_{k}, y_1, y_2, …, y_{n-k}}$ is a basis of $V$, it is a linearly independent set, in particular, for equation (*) we get

$$-b_1 = -b_2 = -b_k = a_1 =a_2 =…= a_{n-k} = 0$$

$\therefore \set{T(y_1), T(y_2), …, T(y_{ n-k })}$ is a linearly independent set.

In particular, it forms a basis of $R(T)$.

$\therefore \rank{T} = \dim R(T) = n-k$

Recall that

$$\begin{align*} \nullity{T} = \dim N(T) = k \br \dim V = n \end{align*}$$

$\therefore \rank{T} + \nullity{T} = \dim V$

Theorem 2.4

Let $T: V \to W$ be linear transformation,

$$T \text{is one-to-one} \iff N(T) = \set{0}$$

Remarks

Null space always contains at least one vector, namely, the null vector $0$.

$$0 \in N(T)$$

Definition: One-to-One

$f: X \to Y$.

$f$ is called a one-to-one or injective if $\forall x_1, x_2 \in X$,

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

Equivalently, $f$ is one-to-one, if $\forall x_1, x_2 \in X$,

$$f(x_1)=f(x_2) \implies x_1 = x_2$$

Equivalently, $\forall y \in Y$, there exists exactly one $x \in X$ s.t. $f(x) = y$.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

Assume that $T$ is one-to-one let $x\in N(T) \implies T(x) = 0 =T(0)$.

Since $T$ is one-to-one, $x = 0$.

=================

Assume that $N(T) = \set{0}$

let $x, y \in V, s.t. T(x) = T(y)$

$\implies T(x) - T(y) =0$

$\implies T(x-y) =0$

$\implies x-y \in N(T) = \set{0}$

$\implies x-y = 0$

$\implies x = y$

Definition: Onto

If $f: X \to Y $ is a function with range $X $, that is, if $f(X) = Y $, then $f $ is called onto.

Equivalently, $f $ is called onto or surjective if $\forall y \in Y$,

$$\exists x \in X\text{ s.t. }f(x) = y $$

Theorem 2.5

$V$ and $W$ finite-dimensional and $\dim V = \dim W = n$, then the following are all equivalent:

  1. $T$ is$\oto$
  2. $T$ is$\ot$
  3. $\rank{T} = \dim V$
  4. $\nullity{T} = 0$
Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$(1) \implies (2)$

Assume $T$ is$\oto$.

$\implies N(T) = {0}$

$\implies \nullity{T} = \dim N(T) = 0$

Now by the dimension theorem, $\nullity{T} + \rank{T} = \dim V$

$\implies \rank{T} = \dim V$

$\dim R(T) = \dim W$

$\because \dim V = \dim W$

$\therefore R(T) \subseteq W$

We have, $R(T) = W$

FC. $R(T) = W ,T$ is onto

$(ii) \implies (iii)$

Assume that $T$ is onto, i.e. $R(T) = W$

i.e. $\rank{T} = \dim W = \dim V$

$(iii) \implies (i)$

Assume that $\rank{T} = \dim V$

$\nullity{T} + \rank{T} = \dim V$

Theorem 2.6

Let $V$ and $W$ be two vector space over field $F ,\dim V = n $.

Let $\set{x_1, x_2, …, x_{n}}$ is a basis of $V_0$, Let $\set{w_1, w_2, …, w_{n}}$ be a set of any vectors in $W$. Then there exists a unique linear transformation $T: V \to W$ s.t. $T(x_i) = w_i, \forall i = 1,2, …, n$.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

Analysis:

$\beta = \set{x_1, x_2, …, x_{n}} \subseteq V \to W \supseteq \gamma = \set{w_1, w_2, …, w_{n}}$

Want to define: $T: V \to W,$ s.t. $T(x_1) = w_1, T(x_2) = w_2, T(x_3) = w_3$

T: $\beta \subseteq V \to \gamma \subseteq W$

You want to extend $T$ to $V \to W$

Define a linear transformation $\R^3$ to $\R^2$ whose image is the line $y = x$ in $\R^2$.

$y = x$

$w = \spa{\set{(1, 1)}}$

$T: \R^3 \to \R^2$

$\beta = \set{e_1, e_2, e_{3}}$

Define $T(e_1) = T(e_2) = T(e_3)$

$R(T) = \spa{T(e_1), T(e_2), T(e_3)} = \spa{\set{(1, 1)}}$

$T(a, b, c) = T(a_1e_1 + a_2e_2 + a_{3} e_{3})$

$= aT(e_1) + bT(e_2) + cT(e_3) = (a+b+c)(1,1)$

Since $x \in V$ be an arbitrary vector. We need to know $T(x)=?$.

Since $\set{x_1, x_2, …, x_{n}}$ is a basis, _ $\exists$ unique scalars $a_1, a_2, …, a_{n}$ s.t. $x = \sum_{i=1}^{n} a_i x_i$

We define $T(x)$ as $T(x) := \sum_{i=1}^{n} a_i w_i$(*)

$T$ is linear transformation.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

$x, y \in, c \in F$

$\because \set{x_1, x_2, …, x_{n}}$ is a basis of $V\exists a_1, a_2, …, a_{n}$ and $b_1, b_2, …, b_{n} \in F$, s.t.

$x = \sum\ a_i x_i$ $x+y = \sum\ b_i x_i$

by definition $T(x+y) = \sum_{i=1}^{n}(a_i + b_i) w_i$ $= c \sum_{i=1}^{n} a_i w_i + \sum_{i=1}^{n} b_iw_i$

so $T$ is a linear transformation.

need to choose $T(x_i) = w_i \forall i$

$x_i = 0x_1 + 0x_2 + … + 0 x_{i-1} + 1x_i + a_1x_i+1 + a_2x_i+2 + … + a_{n} x_{n}$.

by definition (*), $T(x_i) = 0w_1 + 0w_2 + … + 0 w_{i-1} + 1w_i + 0w_i+1 + 0w_i+2 + … + 0 w_{n}$

Remarks

Defining $T$ from basis to entire $V$ is called extending $T$ linearly.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

Assume that: there is another linear transformation $U: V \to W$ s.t. $U(n_i) = w_i, v_i = 1,2, …, n$.

We need to show that $U(x) = T(x) \forall x in V$

since $\set{x_1, x_2, …, x_{n}}$ is a basis of V,

$\exists c_1, c_2, …, c_{n} \in F$ s.t. $x = \sum_{i=1}^{n} c_ix_i$

Then $U(x) = U(\sum_{i=1}^{n} c_ix_i) = \sum_{i=1}^{n} U(x_i) = \sum_{i=1}^{n} c_iw_i = T(\sum_{i=1}^{n} c_ix_i) = T(x)$

Corollary

$\dim V = n$

Let $\set{x_i, …, x_N}$ be a basis of $V ,\set{w_1, w_2, …, w_{n}}$ be any subset in $W$.

If $T: V \to W$ and $U:V \to W$ and two linear transformation s.t.

$T(x_i) = U(x_i) = w_i, \forall i = 1, …, n$

Then $T(x) = U(x), \forall x \in V$.

i.e. $T$ and $U$ are the same linear transformation.

In other words, if two linear transformation from $V$ to $W$ coincide on a basis of $V$, then they coincide everywhere else.

Proof
  </span>
</span>
<span class="proof__expand"><a>[expand]</a></span>

It follows from the uniqueness of the previous theorem.

Find a linear transformation from $\R^3$ to $\R^2$ s.t. $T(1, 0, 0) = (-1, 5)$ and $T(1,1, 0) = (2,3)$

$\set{(1, 0, 0) , (1,1, 0), (0, 0, 1)}$ is a basis of $\R^3$

Choose $T((0, 0, 1))$ to any vector for example $T((0,0,1)) = (0, 0, 0)$.

$(x, y , z) \in R^3$

$T(x,y,z) = $ $(x,y,z) = (x-y) e_1 + ye + ze_3$ $= (x-y)(1, 0, 0) + y (1, 1, 0) + z(0, 0, 1)$ $T(x, y, z) = (x-y)(-1,5) +y(2,3) + 2(0, 0)$ $=(-x + y+2y, 5x -5y + 3y) = (-x+3y, 5x-2y)$